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Metastability and the Ising Model 

E. B. Davies  1 
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We discuss a recent theorem which establishes a precise connection between (i) 
the approximate degeneracy of the zero eigenvalue for the generator of the 
Glauber dynamics of the Ising model in a small nonzero field and below the 
critical temperature, (ii) the existence of a partition of the configuration space 
into a normal region and a metastable region. This enables us to demonstrate 
that the recent approach to metastability of Davies and Martin may be viewed 
as a simple (although in some ways fairly crude) approximation to the conven- 
tional approach. We also obtain what appear to be the first results concerning 
the stability of metastable states under small perturbations. 
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1. INTRODUCTION 

In an earlier paper, (7) Ph. A. Martin and the author described a new 
approach to metastability for classical lattice systems, which grew out of 
analogous work on small quantum systems. (3-5) The author subsequently (6) 
carried out a systematic and purely mathematical investigation of metasta- 
bility for symmetric Markov semigroups, which established a strong con- 
nection between approximate degeneracy of the ground state of the system 
and the existence of a metastable region in the configuration space. The 
goal of the present paper is to draw these various ideas together and to 
discuss their physical implications. Our work is a contribution to the very 
sparse mathematically rigorous literature on metastability of classical sys- 
tems, which is excellently surveyed by Penrose and Lebowitz (8) and Sew- 
ell.(10) 

For the sake of definiteness we shall confine attention throughout to 
the nearest neighbor Ising model in d >/2 dimensions, although reference 
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to Refs. 6 and 7 will make it clear that our ideas have a much wider scope. 
We start with a region 

A = ( i = ( n l , . . . , n d ) : 0 ~ < n  r < N )  

of volume ]A I = N d and with periodic boundary conditions. The configura- 
tion space of the system is then 2 A. At each site i ~ A one has a spin 
o i = + 1, and the finite-volume Hamiltonian is defined at ~ E 2 A by 

= J E o, oj 
i ~ j  

where i,.~j signifies that i a n d j  are nearest neighbors. We also put 

i 

and suppose that the temperature fi -1 of the system is significantly smaller 
than the critical temperature tic - l  for the phase transition. The Gibbs state 
of the system in the external field/~ > 0 assigns the probability 

e x p ( -  - 
g(o:) = (1.1) 

E e x p { -  fl[ %0(~o') - / ~ ( 0 ~ ' )  ] )  
f,0 I 

to the site ~ ~ 2 A. 
We emphasized in Ref. 7 that we were only interested in studying 

translation-invariant states, a restriction which might be important in d > 2 
dimensions. This can be accomplished within the notation of Ref. 6 by 
defining X to be the set of orbits in 2 A under the action of the translation 
group. If 0 : 2 A ~ X is the natural map which assigns each point to its orbit, 
we define an integral on X by putting 

f x f (x )dx  = f(O(oO)g(o~) 
t ~ E 2  A 

for all f :  X---> C. The volume (or probability) of a set E in X is defined by 

= d x  = 

It is clear that [X] = 1, so that X is a probability space. Since X is finite the 
spaces LP(X) are equal for 1 ~< p ~< oo, and we shall often write L(X) for 
them all, but still distinguish between the different Lp norms ]l. lip. 

We define the inner product of f,  h E L2(X) by 

<f,h> = fx f ( x  ) h(x) dx 

We also define the map T: LI(X)--->/l(2A) by 

(Tf)(~) = f(Oto) g(o~) (1.2) 
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It is easy to check that T is isometric for the L l norm and the l I norm, 
and that it is positivity preserving with range the set of translation-invariant 
functions on 2 A. 

Throughout this paper we choose the evolution of the system to be 
specified by the Glauber stochastic dynamics. This has the form 

-~ p,(~) = ~ w(,~, <o,)p,(<o,) 
~t ,~, 

where 

so that 

I g(,,,),/2g,(,,,,)- ,/2 

w(~,,~') = Io~O, g(,,),/2s,(,,,,)-,/2 

if w~o0' 

if~o = w' 

otherwise 

(1.3) 

W(w, ~,') = 0 

for all w' ~ 2 A. Three crucial features of this choice of dynamics are that g 
is stationary, that is 

Wg = 0 (1.4) 

that W satisfies the detailed balance condition with respect to g, that is 

w(~, o,,) g(o,,) = w(o~,,,~) g(,~) 

for all w, w' E 2 A, and that e vet is positivity preserving. 
If the operator H on L ( X )  is defined by 

Hf(Ow) = - g (w) -  ' W ( g .  fO )(w) (1.5) 

then 
THf = - WTf  (1.6) 

for all f E L (X) ,  and we see from (1.4) that 

H1 = 0  
If f,  f '  E L ( X )  then 

Sfs(x)s,(x)<~x= ~ Hs(o~)s,(o,o)~(<~) 
= - ~] W( g .  fO )(w)f'(Oo 0 

= - ~ W(o~, w')f(Ow')g(w')f'(Ow) 
69,0J" 

= - ~ W(~o', ~o)f(Ow')g(w)f'(Ow) 

= f x f ( x )Hf ' ( x  ) dx 
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Therefore H is self-adjoint. Moreover (1.6) implies that 

Te - m f  = e W'Tf 

for all f ~ L ( X ) ,  so e - u t  is a positivity preserving contraction semigroup 
on L ( X )  for the L 1 norm, and hence also for the L 2 and L ~~ norms. 
Therefore the eigenvalues )t. of H, repeated according to multiplicity, can 
be written in increasing order as 

0 = ~ 0 < X  1<~2~< . . .  

The eigenvalue X0 = 0 is nondegenerate because the semigroups e-Ht  and 
e wt are ergodic. 

2. THE DEFINITION OF METASTABILITY 

Having specified the model, we now investigate the existence of a 
metastable state. One of the first problems is that there are several different 
physical criteria for metastability, and that it was not very clear what the 
mathematical relationships between these criteria were. The contribution of 
Ref. 6 was to help clarify this point. 

We take as fundamental to metastability the existence of two time 
scales for the evolution. The first time scale is the scale relevant to the 
relaxation of a small perturbation of the Gibbs state, while the second is the 
scale relevant to the relaxation of the metastable state (that is for the 
formation of a single supercrifical droplet in the metastable state). It seems 
that in the present model the ratio of these two time scales may be of 
magnitude 101~ or even much bigger. 

The simplest way in which these two time scales could be apparent 
would be if the eigenvalues X n of H satisfied 

)~l/X2 ~- �9 << 1 (2.1) 

If there were several different metastable states, or some hidden symmetry, 
H would have a more complicated spectral structure. It was shown in Ref. 
6 that subject to technicalities the spectral property (2.1) implies the 
existence of a partition of X into two regions M 1 and M 2, the smaller of 
which is called the metastable region M for the dynamics. The region M is 
nearly invariant under the dynamics in the sense that 

I I e - ' X M  - XMII, < IM[a(1 + Xet) (2.2) 

for all t >/0, where 8 is a small constant, depending on c. Thus the state 
XM/IMI is very nearly stationary on the time scale associated to X 2 [which 
we call the normal time scale, choosing time units so that Xf l  = O(1)]. The 
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translation-invariant probability density q on 2 6 defined by 

g(,o)lMl-'  ifOw@M 
q(~)= 0 otherwise 

is then nearly stationary for the Glauber dynamics, and may be called the 
metastable state of the system. 

According to the analysis of Ref. 6 the set M is defined as follows. If 
the eigenstate of H corresponding to the eigenvalue ~1 is denoted by q), then 
the self-adjointness of H implies that 

0 = (~,, l )  = ( '~ (x)dx  
Jx 

Therefore 

both satisfy 

M 1 = { x : c p ( x )  > O} 

M: = (x  :0(~)  < O) 

0 < [MiJ < l 

and M is taken to be the set of smaller volume. The main point to notice 
here is that the set M is completely determined by the dynamics, and that 
no further physical input is necessary. Moreover the existence of a region 
M satisfying (2.2) is not only implied by the approximate degeneracy of the 
ground state in the sense of (2. I), but is actually equivalent to the approxi- 
mate degeneracy of the ground state. 

While the above analysis is very encouraging from the theoretical point 
of view, the difficulty of applying it to the Ising model is that it is very hard 
to determine the eigenvalues hi and ?t 2 or the eigenvector ~ explicitly. It has 
therefore been the practice in the physical literature (l'2's'l~ to write down 
conditions involving "critical sized droplets" which specify a set N of 
configurations with the status of an approximate metastable region. The 
calculations of Refs. 2 and 11 provide strong evidence that the set N is very 
close to M in some sense. 

Because the computations involved in the above procedure are very 
complicated, Davies and Martin (7) introduced another proposal for defin- 
ing the metastable state, which amounts to replacing XM by a function K on 
X which should be approximately equal to one inside M and approximately 
equal to zero outside M. This new procedure leads to less accurate 
approximations than that mentioned in the last paragraph, but has the 
compensating virtue of involving rather simpler computations. The func- 
tion K satisfies 

0 < K ( x )  < I 
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for all x ~ X, and the corresponding metastable state on 2 a is defined by 

q(oa) = aK(Ooa) g(w) (2.3) 

where 

a- '= ~K(Ow)g(w)= fxK(x)dx 

The actual definition of K is given in terms of a suitable perturbation 
%x of the Hamiltonian %0, namely, 

K(Ow) = exp[ - fi~'V~(w)] (2.4) 

The trick is to choose a > 0 and 'V x so as to make K(x) as near to one 
inside M and as near to zero outside M as possible. The restriction to 
two-body forces in ~x is made in Ref. 7 to ensure a computationaUy simple 
scheme, and by allowing higher-order interactions one could obtain approx- 
imations of considerably greater accuracy. 

The procedure of replacing the characteristic function XM of the 
metastable region M by a function K, satisfying 0 < K(x)< 1 for all 
x E X, has been discussed at a mathematical  level in Ref. 6, Section 3. It  
was shown there that if K satisfies 

l i e - r a g  - g[I , < 8l[Klllt 
for all t > 0 and some 8 = o(1), as well as some further technically 
nontrivial conditions, and if N is defined by 

N= {x s x  : r (x )  

then 

I le -U'X~-  • < 8 ' lg l (  1 + t) 

where 8 '  = o(1). Thus N is an approximation to the metastable region. We 
shall see in Section 5 that these conditions on K are satisfied for the choice 
(2.4) of K with Wx as specified in the next section. 

3. THE CHOICE OF %x 

It  was shown in Ref. 7 that if one minimizes the free energy of the 
Ising model subject to a quadratic constraint on the magnitude of the spin 
wave fluctuations, one is led to the choice 

% = ~ wAi- j ) (o , -  x)(oj - x) = - 2 x 5 : +  x=lal (3.1) 
i,j~A 

where 

W= ~. we(i-j)oi~ 
i4eA 
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and the value of x is determined by a procedure described below. The 
periodic function w e is characteristic of the constraint chosen, and is 
determined by a summable function w : 7/a-~ N according to the equation 

w?(i) = ~, w(i + i N )  
j E Z  a 

We shall generally not distinguish notationally between w and wp. We shall 
not write down the conditions on w obtained in Ref. 7, but throughout this 
paper content ourselves with the particular choice 

where 

w(i) = ce -i2/2v2 

C-1 ~ E e-J2~272 

j E Z  a 

Although we shall later choose y to depend upon/~ according to 

- 1 / a  y =  yl/z 

we content ourselves at present with the restriction 

1 << Va<< tAI (3.2) 

which ensures that ~V has range which is long compared with the lattice 
spacing but short compared to the size of the box. Under this restriction we 
see that 

Ilwp[l~llwll~ = c~(2~r)-d/2V-a 

Moreover for large y 

[ilw(i)~c'7 
iE~ a 

If we rewrite 

(%0 - t~TC) ' + a%x = (%o + a%) - ( t~ + 2ax)~rC + ax2lk[ 

then we see from (2.3) and (2.4) that q is the Gibbs state 

q = e x p [ - f l ( %  - v g g ) ] / E  e x p { - f l [ ~ ( a y )  - vg~(oa')] } (3.3) 
o a  t 

of the modified Hamiltonian 

in the effective external field 

% =%0  + aqf 

v =/~ + 2 a x  
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The free energy functional d9 A of this Hamiltonian is defined by 

oA(v) ---- -- ( fl IAI)- ' log tr exp[ - f l(% - v~L)] 

while if we parametrize by the magnetization x instead of the external field 
v we obtain 

�9 A(x )= [Al - lmin ( t r [%p]  - f l - ' S ( p ) :  t r [ ao]  = x )  = ~A(v) + vx 

where v E R is determined by 

0 ( I ) A ( p )  

0v 

The thermodynamic limits of �9 A and ~A as N-~  ~ (so that A-~ ~ in the 
sense of van Hove) are denoted by �9 and ~.  

The analysis in Ref. 7 depends upon several hypotheses concerning the 
thermodynamic behavior of the Hamiltonians % and %0. These hypotheses 
are supported by all known results concerning two-body interactions on 
lattices, but have not yet been rigorously proved to hold. 

(H1) For  small enough ~ > 0 the spontaneous magnetization m 
= m(~,~,) of % is less than the spontaneous magnetization m 0 of %0. 
Moreover for fixed ~,, m -~ m 0 as ~ -~ 0 + .  

(H2) For  small enough o~ > 0 the free energy functional q~(x) of % 
satisfies 

~ I ' ( x ) = f  if - m < x < m  

where f depends on a,~. Moreover '~(x) is analytic for Ix] > m and is 
differentiable at x = _ m with ~ ' ( _  m) = 0. 

(H3) For small enough a > 0 the magnetization x(v) of the Hamilto- 
nian % in external field v > 0 is a concave function of v. 

(H4) Let 00A~ denote the two-point function for the Hamiltonian %0 in 
the volume A for the field v, so that 

A . e~o..(, - j )  = ((o i - ( o i > ) ( o  j - (Oj ) )>A,%o, f l , v  

Then the associated Gibbs states are uniformly L ~ clustering as A--> oo for 
each v =~ O, in the sense that there exists a constant Co < oo such that 

A [Iq'o,.lll < Co < 
for each u v s 0 and all large enough A. 

(H5) The same as (H4) except that %0 is replaced by %, q~0A,, by q~A, 
and c o by c. 

(H6) There exist constants k and n such that if v ~ 0 then 

IIq'~lla < k2m(a, ' /)  - "  (3.4) 
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for all large enough A. Note that if v v ~ 0 is very small then (3.4) can only 
hold for correspondingly large A, because of the phase transition which 
occurs at v = 0. 

We shall not repeat the thermodynamic arguments which led us in 
Ref. 7 to the choice (3.1) of ~V x and the choice (3.3) of q. In the calculations 
of Ref. 7, and also here, the constraint 

tr[oiq] = x 

on x is fundamental. The magnetization x and the effective field g are thus 
always determined from ~, a, ~, by the equations 

v =  t~ + 2 a x ,  O~at. - x (3.5) 

If a is small then there is always a solution of these equations with 
x --  m0(~) and this yields (an approximation to) the Gibbs state g. How- 
ever if 

2 a m ( a , y )  >/~ (3.6) 

then it was shown in Ref. 7 that there is a second solution of (3.5) with 
t, < 0 and x < 0. The corresponding state was shown to have a fairly long 
lifetime and was interpreted as a metastable state of the system. 

4. THE METASTABLE REGION FOR ~r 

Although the physical motivation for the above choice of 5; x was, to 
our mind, adequately presented in Ref. 7, its relationship to better estab- 
lished approaches to metastability is admittedly not clear. In this section we 
attempt to bridge this gap by evaluating K ( x )  for some typical configura- 
tions of the spins, in order to gain a qualitative impression of its effect. 

Throughout this section we take fl = 1; this does not decrease the 
generality since the factor fl may always be absorbed into other parameters, 
such as J and/~, and it makes the formulas below simpler to appreciate. 
Since 

K(Oco) = exp[ - a%(co)] 

where ~ ,  (co)> 0 for all configurations co, we see that K(0co) is approxi- 
mately equal to 1 or 0 when a ~  (co) is approximately equal to 0 or + oc, 
respectively. 

It is necessary for our purpose to let a and y depend on/z  in such a 
way that (3.2), (3.6), (4.4), (4.5), (4.6) all hold. The condition (3.6) was 
discussed in Ref. 7 for the model form 

m ( a , y )  = m o -  m l a y  
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It was also shown in Ref. 9, p. 114, that m(a ,y)  > 0 provided a't is small 
enough. It may be seen that possible choices of a and 7 are given by (4.1) 
below. 

(H7) There exist constants al,  "/1 such that if 

a = a l # ,  ~, = ~1l~ - I / d  (4.1) 

then 

2 a m ( a , 7 )  > l* 

for all sufficiently small/z > 0. 
If 0, @ 2 A is any configuration, its magnetization density ~ is defined 

by 

= IAI-' E o, 
i ~ A  

while its two-point function b/: A -+ R is defined by 

1 b,= N +~a (~ ~)(oj - ~) 

The configuration is said to have normal fluctuations if 

b = ~ Ib+l-- O(1) 
iEA  

Lemma 1. For every configuration w E 2 A w e  have 

a , / , ( x  - ~)21A I < a'V~(0,) < a~/*(x - ~)21A l + (2~r)-d /2v~dal  t~2blA[ 

Thus a%x (0,) = o(1) implies 

t*(x - ~)2la[-- o(1) (4.2) 

and is implied by this together with 

/tZlblAI = o(1) (4.3) 

Proof .  By definition 

%(0 , )  = ~ w,_ j (o ,  - x ) (o;  - x )  
t , j  

= 2 WiOi+jOJ-- 2 x ~ l A [  + xa[A[ 
t4 

= s wi(bilal + ~2[al) - 2x~lAI + x21AI 
i 

= • wibilA I + ( x  - ~)21Al 
i 
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Moreover 

E w,b, lAI = E w i - A o ,  - ~ ) ( o j  - ~ )  >~ 0 
i 

because w is of positive type. Therefore 

~(x - ~)21AI .< ~%(o,) .< ~(x - W)2IA[ + ~bllwll~lA[ 

from which the result follows by applying (4.1). 
The above lemma implies that if 

-1 •< IA I << X -2 (4.4) 

then the weight K(&o) of configuration ~0 is very small unless x -- ~, and if 
this holds then the weight is nearly one if the configuration has normal 
fluctuations. 

The presence of the factor IAI in (4.2) and (4.3) is disturbing at first, 
because it suggests that the volume of the system cannot be taken too large. 
However, the same problem occurs in the orthodox approach to metastabil- 
ity, not at the stage of defining the metastable region but at the stage of 
evaluating its lifetime. The physical reason is that there is a constant rate of 
nucleation per unit volume, so that the global lifetime is inversely propor- 
tional to the volume. See Refs. 10 and 11 for a treatment in which the 
thermodynamic limit may nevertheless be taken for these problems by 
limiting the class of observed quantities. 

Our next step is to estimate cv x (oa) for a configuration 0a consisting of a 
droplet of charges + 1 and radius r embedded in a background of magne- 
tization density x < 0 with normal fluctuations. Because this computation 
is rather messy we refer to (3.2) to justify the simplification of replacing a i 
by a continuous distribution a(u) on N a given by 

o(u) = x + (1 - x)e -"2/~2 

so that r determines the scale of the charge reversal region. In this 
approximation q~ (~0) equals 

2 , •  R~(2=)- a/gv - aexp [ - (  u - v) 2 / 2~,2] [ a(u) - x ][  o(v) - x ] dau d~v 

= ( 1  - -  X)2fd a(2rr)-d/27-ci 
aR x ~  

• e x p [ - ( u -  v ) 2 / 2 7 2 -  u2/r  2 -  v2 / r  2] daudav 

= 2-d/2~rd/2r2d(72 + r2) -a/2 

If c~ and g are defined by (4.1) and we put r = "y we obtain 

a%(oa) = 2-d~ra/2gaa = 2-aTr d/2a,71 ~ b (4.5) 
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which is neither very small nor very large. If r < , / then  

~-. r )d a%x(~o) < 2-a~ra/2rao~ b(  

while if r > "/ then 

= 

We thus see that the weight e x p [ - a ~  x (~0)] of the configuration is 
nearly 1 if r << ~, and nearly 0 if r >> 7, so that the critical droplet radius in 
this model is 

r c ~ ,  (4.6) 

This is quantitatively different from the correct form rc~/L- l ,  but has the 
correct qualitative behavior as /~--->0. Note that (3.2) ensures that the 
volume of the critical droplet is much less than IAI. 

5. STABILITY AND LIFETIME 

Continuing with the notation of Sections 1 and 2 we now consider the 
problems of the stability and lifetime of a metastable state with respect to 
the symmetric Markov semigroup e - H t  on  L ( X ) .  We suppose that this state 
is determined by the density p = aK on X where 

a - ]  = ( K ( y )  dfl 
J x  

and 

o < K(x )  <. 1 

for all x E X. Our subsequent calculations will only be valuable if K(x) -- 1 
for x inside the metastable region M and K ( x ) -  0 for x outside M, with 
the possible exception of a small transition region. Our following remarks 
paraphrase theorems in Ref. 6. 

In order to justify calling p a metastable state one has first to show that 
it has a very long lifetime, or alternatively that e - r ap  varies very slowly. 
One also has to show that p is stable, in the sense that if ~/ is a small 
perturbation of p then 7/ converges to p on a short time scale before 
eventually moving with p to the final equilibrium state 1. We consider the 
probability density ~7 to be a small perturbation of p if 

O < ~ < c p  

for some c = 0(1). One necessarily has c >/ 1, and the assumption that c is 
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not too large prevents ~ from being concentrated almost entirely near the 
boundary of the metastable region M. 

In order to examine the above questions it is convenient to introduce 
another evolution on L(X), for which O is an exact stationary state. If we 
def ine/~ on L(X) by 

I4( f)  = pW2H(p -W2f) _ p -,/2H(pW2)f (5.1) 

then it follows by Ref. 6, Theorem 13 that e -/~t is a positivity-preserving 
semigroup on L(X) such that 

H o  = o 

and 

fxe-"f(x)ax= f f(x)dx 
for all f ~ L(X)  and t >/0. 

The motivation for this definition (5.1) of /4 is provided by the 
following lemma. 

l .emma 2. If /~ is the generator of the Glauber stochastic dynamics 
on 2 A corresponding to the metastable state 

q(w) = aK(Oo~) g(w) = p(0w) g(~o) (5.2) 

then 

re - g7 = e r162 (5.3) 

for all t > 0 a n d f  E L(X). 

Proof. The formula (5.3) is equivalent to 

r&= Wri 
which may be written explicitly as 

Itf( Or = - g(w)- ll~ ( g . fO )(o~) 

The definition of I~ is 

Iq(co),/Zq(w, ) -  ,/2 if ~o~o' 

lYV(~~ o-<o,  if co = co' otherwise (5.4) 

/ - -  - -  r 

It is clear from (1.3) and (5.4) that 

Ig i (~o,  w') = K(&o) i/2W(w, w')K(Ow')-1/2 
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if ~0 ~ ~o'. On the other  hand  

( Hp '/2)( Oo~) = - g(o~)- ' W(  a'/2( KO ) t /2g)(w) 

= - ~ g(~o)-'g(o~)'/Zg(oJ ')-  1/2a'/2K(Oco')'/Zg(co') 

+ ~ g(w)-lg(o)'/2g(~o)-~/2a'/ZK(O~o)J/2g(~) 

= -  ~ g(w)-l/2q(o~') 1/2 
0 9 ~ O J "  

+ ~ g(o)l/2g(~o)-'/2al/ZK(Oo~) '/2 
o ~ o  

Therefore  

(0-1/2H01/2)(0~o) _--_ ~, q(~o)-'/Zq(~')l/2+ ~ g(o)l/2g(oo) -~/2 
t o _ _ t o  I o ~  

= dz( , - 

Therefore  

I~r o~') - K(Ow) '/2 W(~o, ~o')K(Ow')- t/2 = ~ , ( p  -,/2Ho,/2)(Oco) 

for all w, w' E 2 A, and 

(tqf)(O~) = [p 1/2n(D-1/2f) ](060) - (p-'/2Hp'/2)(Ow)f(O~o) 

= - o(Ow)' /z  g ( ~ o ) - ~ W ( g .  0 - ~/20" fO ) (0~)  

- (O - ' /2no'/2)(Ow)f(&o) 

= - g ( ~ o ) - ' # (  g .  fO ) (0~)  

as required. 
Our central claim is that positive information concerning the stability 

and lifetime of O is provided if whenever  

0 < ~ < c p  

we have 

lle-m~ - e-O'~lt, <r (5.5) 

for all t /> 0, where e = o(1). If this is valid then although the ergodicity of 
e -  at implies that 

lim Ile-nt~ - ll[~ = 0 
l--~ oo 

it appears that  

lim Ile-m~ - Oil, = 0 (5.6) 
t - - ) ~  



Metastability and the Islng Model 671 

if one restricts to times t = o(E- 1). We leave open the problem of determin- 
ing for which 7/one can be sure that the convergence of e-i-it~ to p is fairly 
rapid. As a special case of (5.5) we do, however, see that 

lie-raP-PIll < et 

for all t/> 0, so the state p certainly has a long lifetime. 
It was shown in Ref. 6, Theorem 15 that (5.5) holds provided 

I [ ( H - / ~ ) 0 f l l ,  < ' l l f l l~  

for all f E L~176 Since the map T defined in (1.2) is isometric this is 
equivalent to 

i I ( W -  #)Z(of)l[1 < ,llflloo 

and is implied by 

for all f ~ l ~176 

T h e o r e m  3. 

[ l ( w -  # ) fq l l ]  < cllfl[oo 

There exists a constant c such that 

]If W -  lC)fq[[1 < clz3/2[AlllfH~ 
for a l l f  E/~(2A).  

We defer the proof of this theorem to Section 6, since it is rather 
technical and depends upon the detailed notation of Ref. 7. We see that we 
have an upper bound on the decay rate 

= r  I (5.7) 

which does not remain small in the thermodynamic limit IAI~ oo, for 
reasons already stated. However, for fixed IAI it is the case that e is very 
small if/~ is very small. 

It is rather disappointing that the upper bound (5.7) on the decay rate 
is much larger than that obtained in Ref. 2, but we wish to emphasize that 
this may be just a result of the crudity of our estimation procedure. It may 
alternatively be an intrinsic limitation due to the use of a two-body 
potential cV. We also emphasize that no proof of stability of the metastable 
state such as (5.6) has been obtained using the standard definition of 
metastability. 

We stated at the end of Section 2 that it is possible to obtain an 
approximate metastable region N from the probability density q under 
certain extra technical conditions. These extra conditions are stated in Ref. 
6, Theorem 7. Making the identification 

o(0,o) = 
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so that the symbol p stands for the same entity as in this paper, the 
condition (ii) of Ref. 6, Theorem 7 is a trivial consequence of Ref. 7, 
Lemma 5, while condition (iii) of Ref. 6, Theorem 7 amounts to the 
assumption that the expected value 

B,:Cx(,,,)q(,,,) 
~O 

of a in the metastable state q is very small. But it was shown in the proof of 
Ref. 7, Theorem 8 that 

3,~%(~)q(,o) <. /~IAI(IIwlI~II~,AII1 + (x a - x) 2) -<< c~=lml 
0)  

We thus see that if 

~21A I = o(1)  (5.8) 

then by Ref. 6, Theorem 7 the set 

N = {x ~ x :  K(x) > 1/2} 

is an approximate metastable region. Alternatively the set 

N '  = {~0 ~ 2A: fla•(oa) < log2} (5.9) 

is an approximate metastable region in 2 A. 
We finally summarize our hypotheses on ~, a, 7, and lab We assumed 

in (4.1) that 
- l/d a=al l* ,  y = y1/~ 

while in (3.2) and (4.4) we needed the estimates 

t*- ' << IAI << t*-2 
in order to obtain physically sensible results. We then concluded in (4.6) 
that the critical droplet radius is 

r c ~ 2  

and that there is a metastable region N '  in 2 a given by (5.9). The most 
unsatisfactory result was that we were only able to obtain the upper bound 

E = c/,3/2[AI 

to the decay rate (5.7). 

6. PROOF OF T H E O R E M  3 

Our proof of Theorem 3 must be read in conjunction with Lemmas 6 
and 7 of Ref. 7, which were proved for a similar purpose but with a less 
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powerful result in mind. We summarize the notation we are using, which is 
almost the same in both papers. The Gibbs state g on 2 A is defined by (1.1) 
and the function K on 2 A by 

K((o) = exp [ - fla~x(r ] 

while the normalization constant a is 

a -1 =~- ' ]K( . )g(w)  
0J 

and the metastable state q is given by 

q(w) = aK(w) g(~o) = p(r g(r 

The two stochastic kernels W and 1~ are defined by (1.3) and (5.4). 
I f f  E/~r A) and r E 2 A then 

( ( W -  W)fq)(~o) 

= ~, (W(co, co')f(oa')q(o/)-l~(~0,r162 
OJt ~ 0  

+ W(~o, ~o)f(co)q(r - lYd(o~, r 

= ~ ( W(oJ, co')f(oJ')q(o~') - #(~o,(o')f(co')q(~o') 
6 0 t ~  

- W(r r162 + 17V(o/, r 

= x (  
0.)t ~CO 

g (r (r ]/2f(oY) aK(r 

_ g (r162 aK(co),/2K(r 

-- g(co) l /2 g(to') l/2 f(09)aK (60) 

+ g(~o)l/2g((o')l/zf(o~)aK(co')'/ZK(oa)'/2) 

Therefore 

I I ( W -  #) fq l l l / l l f l l~  

< 2a ~ g(oO~/2g(co')~/2K(~o)l/21K(~o)~/2- K(o.,')l/2 I 
0J ~ ( . 0 '  

Now 

IK(to) 1/2 - K(o/)] /z  I < �89 flo~ max{ K(~)  '/2, K(60') 1/2) I~x(tO) - c~fx(tO')l 
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and by the proof of Lemma 6 of Ref. 7 

g(~0') 1/2 < g(o01/2exp[/3(/~ + 211hill) ] 

max(K(~0) 1/2, K(o/) 1/2) < K(~0)]/2exp(4/3a) 

Therefore 

[l( W -  #)fqlll/llf[l~ < aB~ ~ g(o0K(~0)l%x(~o ) - %x(~0')t 
r ~ t . O  I 

where 

= ~ q(~o) r(,~) 

r(,o) = 2 1%(,o)- %(~')1 
O J r ~ t 0  

as in Ref. 7, Lemma 6. By Ref. 7, Lemma 7 we deduce that 

~q(~0) Y(~0) < 41Alw(0 ) + 4lAll/2{ ~x(O~)q(~o)},/2 

and then by the proof of Ref. 7, Theorem 8 

%(~o)q(~o) < iAI(IIwlI~IICAII1 + (x A -  x) 2 } 
O9 

The statement of our theorem follows by combining the above estimates 
with the estimates 

= O(~), Ilwll~ = O(~) 

resulting from (4.1). 
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